

COURSE LEARNING OUTCOMES

COMPUTER PROGRAMMING TECHNOLOGY (CPT)

Course
Code

Outcome
Title

Outcome Description

CPT 100 CLO 1 Demonstrate technical skills required of software developers, including the ability to:

CPT 100 CLO 2 Formulate the professional skills required of software developers

CPT 100 CLO 3
Analyze the theoretical and working knowledge of the principles of programming through
completion of tasks and projects

CPT 101 CLO 1 Create interactive websites using HTML, CSS, and JavaScript.

CPT 101 CLO 2 Demonstrate strong computational thinking skills and logically organize data.

CPT 101 CLO 3 Apply methodical approaches to problem solving.

CPT 101 CLO 4 Discuss the web’s pertinence to society and generalize emerging trends in technology.

CPT 101 CLO 5 Implement rich, interactive user interfaces with client-side programming.

CPT 101 CLO 6 Dynamically generate and serve files using server-side programming.

CPT 101 CLO 7 Explain basic Internet communication principles and protocols.

CPT 101 CLO 8 Identify and communicate use cases for different web technologies and languages.

CPT 101 CLO 9 Select the appropriate tools and technologies to solve a problem.

CPT 101 CLO 10 Learn new technologies and programming tools by building on existing knowledge.

CPT 103 CLO 1 Use server-side scripting to create files and interactive applications.

CPT 103 CLO 2 Describe prototypal inheritance and the role of constructors in creating objects.

CPT 103 CLO 3
Manipulate the Document Object Model by working with collections and using anonymous
functions and object constructors.

CPT 103 CLO 4
Describe how Application Program Interfaces (APIs) are utilized in different web
applications.

CPT 103 CLO 5 Design a Application Program Interface (API) for a web application.

CPT 103 CLO 6 Create a web application that calls on an Application Program Interface (API).

CPT 103 CLO 7
Describe understanding of data storage types, including JavaScript Object Notation (JSON),
and techniques for modeling attributes and relationships.

CPT 103 CLO 8 Create a web application utilizing a JSON file.

CPT 103 CLO 9
Describe how to read and use Unified Modeling Language (UML) diagrams to visual the
design of a software system.

CPT 103 CLO 10
Describe how Node is used to write server-side JavaScript and build interactive web
applications.

CPT 103 CLO 11 Build a web application using Node.

CPT 104 CLO 1
Describe, define and apply the major components of the relational database model to
database design.

CPT 104 CLO 2 Use server-side scripting to create a web application built on a database.

CPT 104 CLO 3 Apply the Structured Query Language (SQL) for database definition and manipulation.

CPT 104 CLO 4
Describe how NoSQL databases differ from relational databases, and select a particular
NoSQL database for specific use cases.

CPT 104 CLO 5
Describe understanding of client and server architecture and utilization in full-stack web
applications.

COURSE LEARNING OUTCOMES

COMPUTER PROGRAMMING TECHNOLOGY (CPT)

CPT 104 CLO 6
Describe the role of Transmission Control Protocol/Internet Protocol (TCP/IP) in building
web applications and the role of Hypertext Transfer Protocol (HTTP) in the TCP stack.

CPT 104 CLO 7 Create an interactive web application requiring user authentication.

CPT 104 CLO 8
Describe the difference between authentication and authorization, and their respective
business objectives.

CPT 104 CLO 9
Describe understanding of methods to increase performance and functionality of both client
and server.

CPT 104 CLO 10
Refactor code of existing web applications to maximize code performance and browser
functionality.

CPT 104 CLO 11
Describe the role and function of continuous integration in the software development
process.

CPT 104 CLO 12 Adhere to industry best practices for code readability and maintainability.

CPT 104 CLO 13 Refactor code of existing web applications to improve code readability and maintainability.

CPT 190 CLO 1 Write and explain precise diagnosis for a bug.

CPT 190 CLO 2
Apply tactics for finding and analyzing both reproducible and non-reproducible coding
errors, by identifying, documenting, and refactoring bugs in JavaScript programs.

CPT 190 CLO 3 Isolate, diagnose, and fix bugs by developing hypotheses which can be tested.

CPT 190 CLO 4
Methodically troubleshoot errors in program logic and syntax, using professional debugging
tools (e.g., Firebug) as applicable.

CPT 190 CLO 5
Demonstrate the skills that professional software developers use to approach solving
unfamiliar, open-ended problems.

CPT 190 CLO 6
Identify boundary conditions of computer programs by logically analyzing control and
dataflow.

CPT 190 CLO 7 Explain complex JavaScript programs using drawings, diagrams, and precise language.

CPT 193 CLO 1 Customize Chrome’s Developer Tools settings based on specific development needs.

CPT 193 CLO 2 Utilize the Elements panel in Chrome to inspect and edit HTML + CSS.

CPT 193 CLO 3 Locate and view project directory files in the Resources panel in Chrome.

CPT 193 CLO 4 Analyze server requests in the Networks panel in Chrome.

CPT 193 CLO 5 Perform code tests in the Audits panel in Chrome to ensure quality code.

CPT 193 CLO 6 View and analyze error logs in the Console in Chrome to debug code.

CPT 193 CLO 7 Use Device Emulation in Chrome to debug touch events on desktop.

CPT 193 CLO 8 Describe the use of version control software, such as Git, in software development.

CPT 193 CLO 9
Describe the difference between test-driven-development (TDD) and behavior-driven-
development (BDD), and the use cases for either method.

CPT 193 CLO 10
Understand the thought process and steps involved during a typical test-driven
development session.

CPT 193 CLO 11
Describe how to implement synchronous and asynchronous tests, and the differences
between them.

CPT 194 CLO 1 Describe the role of GitHub and portfolios in acquiring a job as a professional programmer.

CPT 194 CLO 2 Develop and customize personal GitHub portfolios of programming projects.

CPT 194 CLO 3 Communicate individual skills and known technologies to prospective employers.

COURSE LEARNING OUTCOMES

COMPUTER PROGRAMMING TECHNOLOGY (CPT)

CPT 194 CLO 4 Create resume specific to seeking a job as a computer programmer.

CPT 194 CLO 5 Tailor resume and brand based on specific job descriptions.

CPT 194 CLO 6 Demonstrate professional portfolio projects to showcase technical skills and understanding.

CPT 194 CLO 7 Describe technologies, tools, and design decisions utilized in portfolio projects.

CPT 194 CLO 8
Research new technologies found on job descriptions, and describe understanding of
research to prospective employers.

CPT 194 CLO 9
List examples of social and professional programming events and resources and describe
their pertinence to continued education and job search.

CPT 194 CLO 10 Describe and answer coding questions in technical programming interviews.

CPT 199 CLO 1
Explain the difference between different roles in the tech industry, including a developer,
program manager, and designer

CPT 199 CLO 2 Describe the day-to-day activities of a professional software developer

CPT 199 CLO 3
Analyze current trends in the tech industry, considering cases where technology impacts
societal issues

CPT 199 CLO 4 Explain basic programming concepts

CPT 199 CLO 5 Write a simple application in JavaScript

CPT 201 CLO 1 Create an interactive web application using a database

CPT 201 CLO 2 Use arithmetic, comparison, and logical operators in a scripting language

CPT 201 CLO 3 Create and use scripting variables and data types using appropriate naming conventions

CPT 201 CLO 4
Describe how server-side scripting is processed by a Web server and create pages which
include server-side scripting

CPT 201 CLO 5 Use the Document Object Model to interact with a Web page

CPT 201 CLO 6 Use properties, methods and event handlers associated with the Document Object

CPT 201 CLO 7 Create procedures and re-usable functions in a scripting language

CPT 201 CLO 8 Use the request object to retrieve information supplied by a Web user to a form

CPT 201 CLO 9 Describe different data types and how they are used in databases

CPT 201 CLO 10 Illustrate a flow chart for a typical algorithm

CPT 201 CLO 11 Design algorithms typically used in computer programming

CPT 290 CLO 1 Complete a project utilizing pair programming

CPT 290 CLO 2
Explain the responsibilities and skill sets of different roles found on web teams, including
front end developers, back-end developers, program managers, and designers

CPT 290 CLO 3
Explain the importance of diversity on development teams and describe attributes of
effective team cultures

CPT 290 CLO 4 Operate professional development collaboration tools, including Git

CPT 290 CLO 5
Communicate assumptions and choices made in the techniques used to create websites
within teams

CPT 290 CLO 6 Demonstrate the ability to work collaboratively within groups.

CPT 290 CLO 7
Explain the Agile software development principles and Agile’s pros and cons relative to
other software development processes

COURSE LEARNING OUTCOMES

COMPUTER PROGRAMMING TECHNOLOGY (CPT)

CPT 299 CLO 1 Create technical planning documents for a software project

CPT 299 CLO 2 Communicate technical requirements in the form of written specifications

CPT 299 CLO 3 Choose appropriate technologies for solving novel programming problems

CPT 299 CLO 4 Describe projects from their professional portfolio in a job interview scenario

CPT 299 CLO 5
Demonstrate the ability to anticipate and adapt to changing business and technology
environments

CPT 299 CLO 6
Design, plan, and build web applications and websites using professional software
development technologies and methodologies

CPT 299 CLO 7 Refine and improve existing software projects by incorporating feedback from users/clients

CPT 299 CLO 8 Prototype, test, analyze, and refine software based on the iterative design process

